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Abstract. A reduction of the inner product space of the permutation group on an N -  
particle system has been used to develop a scheme for obtaining the states spanning a 
general irreducible representation of the unitary group U(nm) in terms of those spanning 
the product representations of U(n)@U(m). Since relatively straightforward methods are 
now available for determining the Clebsch-Gordan coefficients for the permutation groups, 
the present procedure is viable. As special cases of the general expression, algebraic 
expressions for the reduction of identity and alternating representations of U(nm) are 
obtained. 

1. Introduction 

The adaptation of N-particle basis states spanning an irreducible representation 
(IRREP) of the unitary group U(nm) to the bases spanning the product representations 
of the subgroup U(n)@U(m) and the similar problem for the special unitary group 
SU(nm) 3 SU(n)@SU(m) has an important role to play in both elementary particle 
physics and nuclear physics. Thus simple quark models (cf Lichtenberg 1970 and 
references therein) and the multiquark models (Jaffe 1977) make use of the restriction 
SU(6) 3 SU(3)@SU(2). Inclusion of charm leads to consideration of SU(8) 3 

SU(4)@SU(2) (Greenberg 1978). In nuclear physics, the well known Wigner super- 
multiplet scheme (Wigner 1937) involves the study of SU(4) 3 SU(Z)@SU(2). 

In spite of the above, not many detailed studies of these restrictions are available in 
literature. Most of the earlier studies (Baird and Biedenharn 1963, Nagel and Moshin- 
sky 1965a,b, Louck 1970) have primarily been concerned with extracting the sym- 
metric content of U(nm) from the product representations of U(n)@U(m). In a more 
recent note Patterson and Harter (1976b) were able to generate both the identity and 
the alternating representations of U(nm) from those of the product representations of 
U(n) @U(m). Their approach involved the use of ‘seminormal projection operators’ 
which act as permutation operators on the single particle orbital labels providing the 
fundamental representation spaces of either U(n) or U(m). There are in the main two 
limitations in this approach even though it leads to a normalisable orthogonal basis. The 
first is that only the least troublesome IRREPS of U(nm) can be handled using this 
technique. Secondly the seminormal operators involve explicitly the orbital indices 
which implies the need to realise these operators for the generally large dimensional 
irreducible spaces of U(nm). The complexity of the problem tends to increase rapidly 
with increasing number of particles and also with increasing n and m. A more recent 
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alternative (Strottman 1979) is an extremely elegant formulation but involves the 
realisation of quite a large number of coefficients of fractional parentage. This 
approach has been applied to the restriction SU(6) 3 SU(3)@SU(2) but the more 
general problem of arbitrary n and m has not been handled. 

In the present paper we have exploited the dualism between the permutation and 
the unitarygroups (cf Weyll956, Bohr and Mottelson 1969, Robinson 1961) to obtain 
a viable scheme for the study of unitary group restrictions. The part of the dualism that 
concerns us relates to the fact that the study of inner product reduction of the 
representations of S N  x S N  should lead to a systematic procedure for the product 
representations of U ( n )  @ U ( m )  (Bohr and Mottelson 1969). Since reasonably efficient 
schemes are available (Schindler and Mirman 1977, Sahasrabudhe et a1 1981) for 
obtaining the S N  X S N  reduction, a procedure based on the dualism should be viable. A 
recent study (Sarma and Sahasrabudhe 1980) of permutation adapted canonical tensor 
bases for the IRREPS of unitary groups helps considerably in separating out the S N  x S N  
content of the required restriction so that the need to handle large dimensional IRREPS 
of U ( n m )  is not there. 

The procedure has been outlined in 0 2 and illustrated using examples. Both the 
identity and alternating representations of U ( n m )  have been displayed in a closed 
algebraic form valid for any n, m and N. A brief discussion has been presented in 8 3. 

2. Non-canonical basis for U(nm) adapted to U(n)@U(m) 

First, we briefly review the procedure for generating the canonical tensor bases 
spanning the IRREPS of the unitary groups in the context of U ( n m )  (cf Sarma and 
Sahasrabudhe 1980 for details). Let k i j (a) l i j  = 11, 12, . . . nm;  a = 1, . . . N }  define an 
ordered orthonormal single particle basis spanning the fundamental representation 
space V,, of U(nm) .  The ordering of the basis is defined in the sense that xij precedes 

for any j ,  j '  if i < i' and for j < j '  if i = i'. Using these basis orbitals the space of Nth  
rank tensors, V,, @", is generated in the form of ordered products as 

nm 

i j = 1 1  
V,,@": [ N ( i j ) = l ( N l l . .  , N,,))= 1 , ~ ~ ~ ) ~ ~ ~ .  . . 1 , ~ ~ ~ ) " ~ ~ ;  c Nij = N I .  

This tensor space is reducible into irreducible subspaces of U(nm) .  The reduction 
leading to canonical basis states spanning the IRREP [A] of U ( n m )  can be effected using 
the Wigner operators of S N  which can be defined in a normalised form (Kaplan 1975) as 

where [ A ]  is the corresponding IRREP of S N ,  is the rsth element of the Young 
orthogonal representation matrix (Robinson 1961) for the permutation P and f,, is the 
dimensionality of the IRREP of S N .  Applying the above operator to the monomial 
/(Nll . . . Nnm)) of equation (1) we observe that linear dependencies arise. This follows 
since any permutation Q which leaves the monomial invariant transforms wfs  to a linear 
combination of O J ; ~ , .  A consistent choice of operators in this ambiguous situation is to 
define a symmetrised normalised combination, 
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such that 

w L ) Q  = (4) 
for any permutation Q belonging to the subgroup S N , ~ @ S N ~ ~ @ .  . . @SN,, ,  of the 
permutation group S N .  The suffix ( p )  has been used in equation (3) to represent a 
standard Weyl tableau of the IRREP [A] of U(nm)  containing as entries the indices of 
orbitals occurring in the monomial ((N11N12 . . . Nnm)) of equation (1). The summation 
on the right of equation (3) is over a set S ( p )  of standard Young tableaux (SYT) s such 
that the replacement of the entries 1,2, . . . , N in s by the orbital indices 11,12, . . . , nm 
as they occur in I(Nl1Nl2. . . Nnm))  yields the standard Weyl tableau ( p )  (cf figure 6 of 
Patterson and Harter 1976a and p 119 of Bohr and Mottelson 1969). Representing the 
monomial /(Nll . . . Nnm))  more compactly as we observe that the Weyl tableau 
index ( p )  can be Ieplaced by a combination index (s :No))  since such a combination 
corresponds to a unique ( p )  which, in turn, fixes the complete set S ( p )  of SYT. The 
symmetrisation coefficients a$(p)  of equation (3) can readily be determined using 
elementary transpositions of SNl,@SNl,@. , , @ S N n ,  as outlined in an earlier note for 
U ( n )  (cf the discussion leading to equation (19) of Sarma and Sahasrabudhe (1980)). As 
an illustration of the procedure, consider 

for the IRREP [3,1] of U(2). We observe that the set S ( p )  as defined above consists of 
the SYT 

123 124 134 
4 3 2. 

We now desire a symmetrised linear combination of the above set which is invariant 
under Q E SI @S3 c S4. Using elementary transpositions (2,3) and (3,4) and the simple 
form of the Young orthogonal representations for these, the right invariance criterion 
leads to the combination 

We thus find that the symmetrisation coefficients are given by 

That the elementary transpositions of S N ~ , @ S N ~ , @ .  . .@SN, , ,  are necessary and 
sufficient follows from the construction of w:(p) as in the earlier work on U(n) (Sarma 
and Sahasrabudhe 1980). 

of equation (3) as in equation 
(4) also ensures that we can relate any element of the linearly dependent set 

The right invariance of the operator combination 

{w;sj(~11 * N n m ) ) ;  s E S ( p ) )  to W ; ( p ) I ( N 1 1  * N n m ) )  

w;SjWii - - I N n m ) )  = a$(p)w:(p)l(N1l + N n m ) ) .  (6) 

through 

We can readilyverify this result using the example of equation ( 5 ) .  Since the monomial 
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used is of the form lp1cp:) which is invariant under the transpositions (2,3) and (3,4) we 
have, for example, 

leading to 

[3, 11 3 1 [3,11 3 
W r  4 1 2 3 I p l I C Z ) = ~ 0 , 1 ~ 4 I p l p Z ) ,  3 

Similarly, using the transposition (2,3) we also obtain 

3 
W E 3 i : ] , l d )  = f i ~ F 3 ; 3 ~ 7 ~ ) .  

2 2 

(7) 

Combining the results of equations (7) and (8) on the right of equation ( 5 )  we obtain the 
result 

This illustrates equation (6). 

also Patterson and Harter 1976b) that the set of functions 
For a given value of the index r it can be shown (Sarma and Sahasrabudhe 1980, see 

forms an orthonormal canonical basis set spanning the IRREP [ A ]  of U(nm) ,  where the 
monomial I(Nl1. . . Nnm)) of equation (1) corresponds to the Weyl tableau ( p ) .  

(ij, kt = 
11,12, . . . , nm)  of U ( n m )  can be obtained by defining them as shift operators in V,, 
(Bohr and Mottelson 1969, p 121, Hecht 1973, Lezuo 1972, Patterson and Harter 
1976 b) : 

The transformations induced in these basis states by the generators 

N 

E i / , k r  = 2 ei/,kc(a) (10) 
CY=l 

where the single particle operator el,,kr(a) annihilates the orbital x k r  occupied by the a th 
particle and creates in its place the orbital xo. 

Based on the above considerations, we now consider the decomposition of the space 
V,, as V, @ V, where V, and V, are the fundamental representation spaces of U ( n )  
and U ( m )  respectively. The existence of such a product decomposition of U ( n m )  
implies that each particle a is located by two coordinates r,, 13,. Accordingly each single 
particle orbital x ( a )  can be represented as an ordered product u(r,) U(@,) where u(ra)  is 
a vector in V, and u(19,) is a vector in V,. Thus if {uL(r,)li = 1 , .  . . , n ;  a = 1, .  , . , N }  
and (u,(@,) l j  = 1, . . . , m ;  a = 1, . . . , N }  define orthonormal bases spanning V, and V, 
respectively for the particles a = 1,2,  . . . , N, we have 

(11) 
Since every permutation of particles, P, now acts simultaneously on the r and I3 

xl,(a) =xV(rLy, 0,) = ul(r,)uJ(&). 
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coordinates we have 

P = P‘P8 (12) 
where P‘ and P e  are permutations of r and 8 coordinates respectively. Using the above 
product form of the permutations, the Wigner operator defined by equation (2) 
becomes 

Using the orthogonality of the Young representation matrices we also have (Kaplan 
1975, p 42) 

fu 1/2 

p ‘ = c  (&) [ P I K k l w K k l  (14) 
w i l , k l = l  

where W K k ,  and W t k ,  operate on the Nth  rank tensor spaces VnON and VmON 
respectively. Substituting the right-hand sides of equations (14) and (15) on the right of 
equation (13) we obtain the results 

Using the definition of the Clebsch-Gordan (CG) coefficients for S N  (Hamermesh 1962, 
p 261) we have 

where rA is an index to distinguish between the multiple occurrence of the IRREP [ A ]  of 
S N  in the product representations [ p ]  X [PI of S N  X S N .  Using the result of equations 
(17) in (16) we obtain the.result 

The right-hand side of equation (18) is completely determinable since reasonably 
efficient schemes are available for determining the Clebsch-Gordan coefficients of S N  
(Schindler and Mirman 1977, Sahasrabudhe et a1 1981). As an illustration of the form 
the right-hand side of equation (18) takes, we consider a particular Wigner operator for 
the IRREP [2, 11 of S3 and express it as a linear combination of product representations 
occurring in S3 x S3 

[ 2  11 [ 2  11 L2.11 [2,11 [2,11 [2,11 

3 2  2 2  2 2  3 2  3 3  2 3  
+w1;13 w13’13+013 13 w12 1 3 - w 1 2  12 w13 12 

2 3  3 3  2 2  3 2 3 2  2 2  
3 3  3 3  

where the CG coefficients listed by Hamermesh (1962) have been used. 
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Applying the operators on both sides of equation (18) to the tensor monomial of 
equation (1) and using equation (6) we obtain 

We now examine the right-hand side of equation (19) in greater detail. Each element of 
the set defined by equation (1) spanning V,, 0” can be decomposed into a product of 
an Nth  rank tensor in V, 0” and an Nth  rank tensor in Vm 0”. In view of the ordering 
used for defining the elements of equation (l), we find that the tensor of V,BN is 
already in proper order with ui preceding u j  if i < j .  This, however, is not in general true 
for the element of Vm 0” occurring in V,, 0”. As an example consider the third rank 
tensor I ( x ~ ~ x ~ ~ x ~ ~ ) )  generated from products in V9 = V3@ V3. We have 

I ( x 1 1 x 2 2 x 3  1)) = I (U 1 uzu3))I (U lU2V 1)). 

The right-hand side of the above expression which is not properly ordered can be 
restored to proper ordering using a coordinate permutation in 0 space as 

I ( A ’ i i X z z ~ 3 1 ) )  = I(UiUzU3))(2, 3)-11(0:~z)). 
Generalising the above result we have 

j ( ~ 1 1  + * 0 Nnm)) l(N(ij))) = I ( N Y  - 1  N : ) ) P - ‘ I ( N Y  * * NL)) J(N:) ))p-’I(Nyj) 1) (20) 
where P is the permutation in 0 space which properly orders the tensor of V, 0”. We 
now note that the right application of any permutation to a Wigner operator leads to the 
result 

Combining the results of equations (20) and (21) on the right-hand side of equation (19) 
we obtain 

x W K k l  I(N1” U - N : ) ) W t k i l ( N Y  N L ) )  (22) 
where we have replaced the Weyl index ( p )  by (s: No)) on the left as outlined earlier. 

Symmetrising the Wigner operators occurring on the right-hand side of equation 
(22) as was done using equation (6) for the basis states of U(nm) we have 

fl’ fo 
/ [ A I ;  r ( s :  N(ij)))=x 1 1 1 1 ( f P . f p ) ’ / 2 [ p ] f h k ,  

1.4 TA i1J2 i ~ ~ k 2 . k ;  
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(24) 

and where, further, we have abbreviated all the relevant monomial tensors as 

For notational convenience we may drop the repeated index s specifying the SYT on 
the symmetrisation coefficients wherever no confusion is likely to arise, as for example, 
in the replacement of a?(s :N( , j ) )  by a& (,,) ). 

At first sight it might appear surprising that in equation (23) we are using canonical 
tensor basis states carrying two indices j l ,  k l  etc. That such states occur naturally in any 
scheme utilising the duality between unitary and permutation groups has been pointed 
out by a number of workers (Kaplan 1975, Bohr and Mottelson 1969). In fact Bohr and 
Mottelson display some of these states explicitly (cf p 130). As pointed out by them, and 
demonstrated explicitly later (Sarma and Sahasrabudhe 1980), the generators of the 
unitary group change only the monomial and hence affect the indices kl ,  k 2  leaving j l  

and j 2  unaffected. This result combined with the definition of the CG coefficients of S N  
(cf Kaplan 1975, equation (1.79)) when used to perform the summation overjl andj20n 
the right of equation (23) leads to 

where now the product states are in the usual form with fixed first indices {*?} and, in 
general, more than one value of k l ( k ; )  can produce the same state 

The right-hand side of equation (25) seems to imply that the linear combinations of 
product states depend on the SYT index s from which we start. This is, in fact, not true. 
Replacement of the symmetrised operator on the left by ( a i ~ , ) ) - ' m ; ~ , ,  for s' # s in 
accordance with equation (6) and expansion of mis,  using equation (18) shows immedi- 
ately that such dependence on starting SYT does not exist. This permits us to identify 
each of the states on the left-hand side of equation (25) with the standard canonical 
tensor basis which, in turn, can be identified with the corresponding Weyl tableau basis. 
For computational purposes it is convenient to replace the summations on the right of 
equation (25) with equivalent ones as follows. We replace ~k by ~ ( ~ u ) ~ ( ~ )  &:klES(pU) 

where the first summation is over all Weyl tableaux ( p " )  associated with a given 
monomial IN;) ) contained in the leading to a specified ( p ) .  A similar replacement 
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is done for the summation over kh. Such replacements are possible because the SYT 
k l ( k h )  are classified as disjoint sets S ( p " )  ( S ( p " ) )  corresponding to distinct ( p " ) ( ( p " ) )  
associated with a given monomial lNhl ) ( lN~j ) ) ) ,  Thus we have 

where s is any SYT in S ( p )  and the monomials IN(ij)), IN;) ) and IN& ), corresponding to 
( p ) ,  ( p " )  and ( p " )  respectively, are related by lN~ij,) = /N&)P-llN;)).  

We now illustrate the use of equation (26) by considering a simple example of the 
basis state d!, 22 of U(4) which will be expressed in terms of the basis states spanning the 
product representations of the subgroup U(2) o U ( 2 ) .  The corresponding IRREP [2, 13 
of S3 occurs in the reduction of the inner product IRREPS [3]x[2, 11, [2, 1]x[3], 
[2, 1]x[2, 11, [13]x[2, 11, [2, 1]x[13] of S3xS3. Out of these the last two do not 
contribute to the relevant basis state of U(4) since the Wigner operator for the IRREP 
[13] annihilates the tensor monomials I U I  U : )  and / V I  U : )  occurring in / x ~ l x & ) .  We 
further observe that the matching permutation P in v space is the identity since the 
required monomial is already properly ordered. Taking \ as the reference tableau s 
on the left of equation (25), the necessary CG coefficients (cf Hamermesh 1962, p 270) 
are 

1 2  1 2 3  1 2  = 1 2  1 2  1 2 3 = 1  1 1, 3 1 1 3  3 

~ 1 1  [31 [2, 11 ~ 2 ~ 1 1  ~ 2 ,  11 PI  

Noting that for the given monomial we have NI1 = N ?  = NY = 1 and N22 = N i  = N;1 = 
2 with all others being zero, we have, on using equation (26), 
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where the Weyl tableau notation has been used and the symmetrisation coefficients 
- 

have been obtained using the procedure outlined earlier. 
Two special cases of equation (25) which have important bearing on many physical 

applications are the study of the identity and alternating representations of U(nm). In 
both these cases the required CG coefficients of SN have a particularly simple form and 
this, in turn, leads to a particularly simple form for equation (25). We consider first the 
identity representation [NI of U(nm). The CG coefficients for the corresponding IRREP 
[NI of S N  are of the form (cf Hamermesh 1962, equation (7-209)) 

where K is as defined by equation (24) with fA = f[N~ = 1. This particular representation 
has been extensively studied using a boson operator approach (cf Patterson and Harter 
1976b and references therein). However, it is to be noted that this approach does not 
lead to closed expressions as above but involves operations on specific basis functions of 
U(nm). As an illustration of equation (29) we consider the case N = 2, n = 3, m = 2 and 
the representation [3] of U(6). Let the monomial of V.Q3 being considered be 
I(xllx22x32)) = I(ul u2 u3))I(u1 v2  u2)). We note that there is no symmetrisation 
required in the product space basis I(xllx22x32)) since each of the x is singly occupied. 
Thus ~ [ 1 3 2 : ( 1 1 2 2 3 2 )  = 1. The same result holds true in the u space since each orbital 
defining the monomial / (u l  u2 u3)) is again singly occupied. Thus each of the required 
symmetrisation coefficients afl(N;,) = 1 for this monomial. The occupancies of the 
orbitals defining the u-space monomial are the same as those considered in equation 
(19), so that the required symmetrisation coefficients are the last three given in that 
equation. Using these results and fr3] = 1, fr2,1] = 2 on the right-hand side of equation 
(29) we obtain 

1 
/[3]; l (1:  11 22 32))=z(1[31; (1: u1uzu3))1[3]; (1: o,o;>> 

A similar procedure can be used to obtain the other two basis states listed by Patterson 
and Harter (1976b) using the appropriate reordering permutations in the o space. This 
procedure is found to lead to the inverse of the real orthogonal matrix given by them (cf 
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their equation (24)). A similar check is possible with the results given by Lichtenberg 
(1970) (cf equation (11.82)). 

As a final step in the present study we obtain the basis for the alternating 
representation [ lN] of U(nm) from those spanning the product representations of 
U(n)@U(m). In this case we again start with equation (25) and use the CG coefficients 
for S N  (cf Hamermesh 1962 equation (7-211a)): 

where the SYT k2  is obtained from k l  by interchanging the rows and the columns and 
At,  = *1 depending on whether kl has been obtained from the first of the SYT spanning 
the given IRREP by an even or an odd permutation. Using the results of equation (30) on 
the right-hand side of equation (25) we obtain 

1U”I; l(1: N1l. I . N d ) = X c  ( fcc)1’2[Pl~~~,A~2a92(~f; , )  
CL k1&2 

(31) 

This result may be used to reproduce equation (48) of Patterson and Harter (1976b). 

3. Discussion 

To the best of our knowledge equations (25) and (26) constitute the first attempt to 
obtain a generalised expression for obtaining the basis transformation for the subgroup 
adaptation U(nm)lU(n)@U(m). This expression, valid for any n, m and N and any 
IRREP [A] of U(nm), could be derived mainly because the SNXSN content of 
U(n)@U(m) could be separated out. In the usual Gelfand-Zetlin (1950) form for the 
canonical basis spanning the IRREPS of unitary groups this separation is not readily 
evident. In fact even the explicit realisation of more than one set of canonical basis for 
these IRREPS of unitary groups appears only if we employ the tensor representation (cf 
Bohr and Mottelson 1969, p 130). A computation scheme based on equations (25) and 
(26) is quite feasible since a number of useful algorithms have been obtained recently 
which enable permutation groups to be handled readily (Sarma and Rettrup 1977, 
Rettrup 1977, Sahasrabudhe eta1 1980,1981, Schindler and Mirman 1977, Karwowski 
1973, Sarma 1981, Butler 1975). Further the specialised forms given in equations (29) 
and (31) which involve only a knowledge of symmetrisatioii coefficients and the 
representation matrix of an appropriate permutation are the most useful ones in many 
areas of application. 

Attempts are at present being made to determine the matrix elements of irreducible 
tensor operators of U(nm) using these basis states adapted to U(n)@U(m). 
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